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This paper obtains optical soliton solutions in magneto-optic waveguides with several perturbation terms. In addition to 

group-velocity dispersion, spatio-temporal dispersion term is taken into consideration. There are three types of nonlinear 

media studied in this paper. They are Kerr law, power law and log-law nonlinearities. Bright, dark and singular soliton 

solutions are obtained. Numerous constraint conditions naturally emerge for solitons to exist.  

 
(Received July 30, 2014; accepted September 11, 2014) 

 
Keywords: Solitons, Magneto-optic waveguides, Integrability 

 

 

 
1. Introduction 

 

Optical solitons is one of the most fascinating areas of 

research in nonlinear optics. There is lots of research 

activity that are being conducted in various corners of the 

world in this filed [1-15]. This lead to several results that 

have various practical applications. This paper will address 

the dynamics of optical soliton propagation through 

magneto-optic waveguides in presence of spatio-temporal 

dispersion (STD). This dispersion term is considered in 

addition to the usual group velocity dispersion (GVD) and 

it provides well-posedness to the problem [8, 13]. 

Magneto-optic waveguides provides a means for 

compelling solitons to move from a state of attraction to a 

state of isolation [2, 3, 15]. 

The nonlinear Schrӧdinger's equation (NLSE), with 

perturbation terms, will dictate the dynamics of the 

propagation of solitons through these waveguides. There 

are three types of nonlinear media that will be touched 

upon, in this paper. These are Kerr law, power law and log 

law. For the first two cases, bright, dark and singular 

soliton solutions to the governing equation will be 

obtained. The integrability conditions, also known as 

constraint conditions will naturally fall out of the 

integration scheme. In the past, this problem has been 

studied with unperturbed NLSE, and the results are 

reported [15]. This paper is therefore an extension of 

earlier results. 

 

 

2. Mathematical model 
 

The mathematical model that describes the dynamics 

of soliton propagation through optical fibers in presence of 

magneto-optic field is given by the following coupled 

system of NLSE [2, 3, 15]. 
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In equations (1) and (2) aj represents the coefficients of 

GVD while bj, for j = 1, 2 are the coefficients of STD. The 

functional F is the type of nonlinearity that will be 

considered. On the right hand side Qj represents the 

magnetic field effect, while αj are the coefficients of inter-

modal dispersion. Also, λj represents the coefficients of 

self-steepening terms in order to avoid shock-wave 

formation, νj are the coefficients of nonlinear dispersion, 

while θj also gives nonlinear dispersion. Besides Qj, all 

terms on the right hand sides, are treated as strong 

perturbation terms. This paper will carry out the 

integration of the model given by (1) and (2), in order to 

extract soliton solutions to the equations. This will be 

possible provided the type of nonlinearity is given. This 
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will be discussed in the next three sections after an 

elementary analysis in the remainder of this section. 

 To integrate the coupled NLSE (1) - (2) we assume a 

solution structure of the form 
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where Pl(x, t), for l = 1, 2 represents the amplitude 

component of the soliton, and phase factor is given by 

with 

 

      txtx ),(                         (5) 

 

Here κ is the frequency of the solitons while ω represents 

the wave number and θ is the phase constant. Substituting 

(3) and (4) into (1) and (2) and then decomposing into real 

and imaginary parts gives 
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with ll  3 , and imaginary parts yields 
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From equation (7) is possible to retrieve the speed of the 

soliton 
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as long as the constraints 
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remain valid. Notice that P(x, t) can be represented as  

)( vtxg 

 

where the function g is the soliton wave profile 

depending on the type of nonlninearity, and v is the speed 

of the soliton. Now, equating the two values of the solitons 

speed (8) leads to 
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Consequently the equation (8) reduces to  
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Equation (12) shows that the speed of the soliton is a 

rational quantity and so this can lead to soliton speed 

control, which can be applied to address Internet 

bottleneck, which is a growing problem in Internet data 

transfer. It is worth to mention that the speed of the soliton 

given by (12) stays valid as long as constraints (9) and 

(10) hold. Therefore the coupled NLSE for the perturbed 

magneto-optic waveguide is re-casted as 
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and as a consequence the real part equation (6) modifies to 
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For the next three sections the study of the integrability of 

(16) will be stressed for three different types of 

nonlinearity. 

 

 

3. Kerr law 
 

For Kerr law nonlinearity, F(s) = s. As a consequence, 

the equations (14)-(15) modify to 

 

  

 
    xxxx

xtxxt

qqqqqqqirQ

qrqbqaqiq

2

1

2

1

2

11

2

1

2

1









 

(17) 

 

  

 
    xxxx

xtxxt

rrrrrrriqQ

rqrbrarir

2

2

2

2

2

22

2

2

2

2









 

(18) 

 

The imaginary part (7) is preserved and the corresponding 

real part equation (16) is given by 
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after considering the constraint (10). The ansatz approach 

will be applied to this equation to retrieve the 

corresponding bright, dark and singular solitons solution. 
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3.1 Bright solitons 

 

For bright solitons the assumption for the wave profile 

is 
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ll AP sech    (20) 
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Where Al and B represent the amplitude and inverse width 

of the soliton, respectively. Substituting (20) into (18) and 

simplifying leads to 
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Balancing principle yields 
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for l = 1, 2. Next, from (22), setting the coefficients of the 

linearly independent functions 
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whenever 0bB , and for the wave number one obtain 
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Equating the two expressions for the soliton speed v that 

arise for l = 1, 2 in (25) implies 
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which immediately prompts the constraint 
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Similarly, equating the two expressions for the soliton 

wave number from (26) for l = 1, 2 gives 
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which connects the amplitudes of bright solitons in the two 

components. Next, by equating (12) and (25) for either l = 

1 or l = 2 and considering (27), one get 
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By performing a substitution of (30) and (32) into identity 

(29) one get two possible expressions for the soliton 

frequency, 
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Finally, the bright 1-soliton solution for perturbed 

magneto-optic waveguides with STD is 
)(

1 )]([sech),(   txievtxBAtxq   (38) 

)(
2 )]([sech),(   txievtxBAtxr   (39) 

 

 

3.2 Dark solitons 

 

For dark solitons the assumption for the wave profile 

is 
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ll AP tanh   (40) 

 

where τ is being defined as in (21) . However for dark 

solitons the parameters Al and B are considered herein as 

free parameters. Substitution of (40) into (17) and (18) 

leads to 
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Balancing principle leads to the same value of pl as given 

in (24). Moreover, the standalone linearly independent 

functions 2tanh
lp

 also yields the same value of pl. Next, 

setting the coefficients of other linearly independent 

functions jpltanh to zero for j = 0, 2 gives 
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Now equating the two expressions for the soliton speed v 

that arise for l = 1, 2 in (42) implies the same relation as 

given in (27). Consequently, equations (30) - (33) are also 

valid for dark solitons. Similarly, equating from the 

soliton wave numbers (43) yield 
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that relates the free parameters Al. Then, by equating (12) 

and (42) for either l = 1 or l = 2 and considering (27), one 

recovers 
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Then, substituting (45) and (47) into (44) one retrieve the 

same expressions for κ and corresponding constraints as in 

(34)- (37). This leads to the dark 1-soliton solution for 

perturbed magneto-optic waveguides with STD as 
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3.3 Singular solitons 

 

For singular solitons the assumption for the starting 

hypothesis is 
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Balancing principle gives the same value of pl as given in 

(24). Next, from (52), setting the coefficients of the 

linearly independent functions jplcsnh  to zero for j = 0, 

2gives for the soliton speed the same expression as in (42), 

which naturally implies the same relation as given by (27). 

Therefore, the amplitudes for singular solitons are the 

same as for dark solitons with corresponding constraints 

(45) -(48). For the wave number one have  

 

  




















23)(2

2)(2

)1(2

1

lllllll

lll

l AAA

AQAa

Ab 




   (53) 

 

Equating the two expressions for the soliton wave number 

from (53) for l = 1, 2 gives  
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By substituting (30) and (32) into (54) one get the same 

expressions for κ and corresponding constraints as in (34)-

(37). Hence, the 1-soliton solution for perturbed magneto-

optic waveguides with STD is 
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)(

2 )]([csch),(   txievtxBAtxr   (56) 

 

This singular soliton will exist provided the 

constraints conditions given in this subsection. 
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4. Power law 
 

For the power law nonlinearity, 
nssF )( , where n 

represents the power law nonlinearity parameter. Here the 

stability issue dictates 0 < n < 2 and also 2n  for 

avoiding self-focusing singularity. Thus, the system (14) - 

(15) is rewritten as 
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Upon substituting (3) and (4) into (57) and (58) the 

resulting real part obtained is 
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and for the imaginary part 
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From (60) is possible to retrieve the solitons speed (8) as 

long as the constraints (9) and 

 

                  02)12(  lll nn    (61) 

 

Consequently (11) and (12) are also satisfied in this case, 

and the real part (59) becomes 
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The ansatz approach will be applied to equation (62) 

in order to retrieve bright, dark and singular solitons. 

 

 

 

4.1. Bright solitons 

 

For bright solitons, the starting hypothesis is the same 

as that of Kerr law nonlinearity given by (20) along with 

(21). After substitution, (59) reduces to 
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Balancing principle yields 
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so that 
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for l = 1, 2. Next, from (63), setting the coefficients of the 

linearly independent functions jplsech to zero, for j = 0, 

2 leads to the speed and wave number of the bright soliton 

as 
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after using constraint (61). Next, equating the two 

expressions for the soliton speed v that arise for l = 1, 2  in 

(66) implies  
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subject to 
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Similarly, by equating the two expressions for the soliton 

wave number from (67) for l = 1, 2 one obtains 
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Next, by equating (12) and (66) for either l = 1 or l = 2 and 

considering (68), recovers the soliton amplitudes as 
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 (71) 

subject to 
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Thus, the bright 1-soliton solution for magneto-optic 

waveguides with STD and power-law nonlinearity is 
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4.2. Dark solitons 

 

For dark solitons, the starting hypothesis is as given 

by (40), thus the real part equation simplifies to 
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Balancing principle leads to the same value of pl as 

given in (65). Moreover, the standalone linearly 

independent function 2tanh
lp

 also yields the same value 

of pl as given by (24). This means that dark solitons will 

exist in magneto-optic waveguides provided power law 

reduces to Kerr law. Therefore all the results from the 

subsection of dark solitons for Kerr law nonlinearity are 

valid for this subsection as well. 

 

4.3. Singular solitons 

 

For singular solitons, the starting hypotesis given by 

(51) reduce (59) into 
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after adopting the constraint given in (61). Balancing 

principle gives the same value for pl as in (65). Then, from 

(78), the linearly independent functions jplcsnh  for j = 

0, 2 leads to  
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Next, after equating the two expressions for the soliton 

speed v in (79), one gets (68) and consequently (69). In a 

similar manner, equating the wave numbers from (80) for 

l = 1, 2 prompts to 
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Next, by equating (12) and (79) for either l = 1 or l = 2 and 

considering (68), one generates 
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The singular 1-soliton solution for magneto-optic 

waveguides with STD is 
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These singular 1-soliton will exist provided necessary 

constraint conditions hold. 

 
 
5. Log law nonlinearity 
 

For log law nonlinear media, solitons in magneto-

optic waveguides are modeled by 
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For this kind of nonlinearity, the real part (16) is given by 
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For log-law nonlinearity, NLSE supports optical 

Gaussons that are given as 
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where Al represents the amplitudes of the Gaussons, while 

B is its inverse width. Inserting this hypothesis into (90) 

gives 
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Setting the coefficients of the linearly independent 

functions 
j  , for j = 0, 2 leads to the velocity of the 

Gaussons being 
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Thus, equating the two expressions for the v from 

(93) proposes the constraint 
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The second linearly independent function from (92) 

yields the wave number of Gaussons as 
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Finally, equating the two values of ω from (95), for l = 1, 

2, leads to the relation of the two amplitudes by 
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Therefore, optical Gaussons in magneto-optic waveguides 

with log-law nonlinearity is 
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6. Conclusions 
 

This paper obtained exact 1-soliton solutions to NLSE 

in magneto-optic waveguides with perturbation terms 

taken into consideration. The STD was included in 

addition to GVD which makes the problem well-posed. In 

fact, the inclusion of STD provides a means to control 

Internet bottleneck. The perturbation terms considered are 

inter-modal dispersion, self-steepening, nonlinear 

dispersions. Three types of nonlinearity are studied and 

they are Kerr law, power law and log law. Several 

constraint conditions are obtained. These relations must 

remain valid for the solitons to exist. 

There are several avenues of extension to this project 

in future. There are additional laws of nonlinearity that 

will be touched upon in future. They are parabolic law, 

dual-power law, polynomial law, triple-power law, 

saturable law and many others. The computational aspects 

for these additional laws will require long and tedious 

algebraic maneuvering and simplification. Therefore study 

for those laws will be reported in future. This is just a tip 

of the iceberg. 
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